Dispersive Estimates for Schrödinger Operators: a Survey

نویسنده

  • W. SCHLAG
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dispersive Estimates for Schrödinger Operators with Measure-valued Potentials in R

We prove dispersive estimates for the linear Schrödinger evolution associated to an operator −∆+V in R3, where the potential is a signed measure with fractal dimension at least 3/2.

متن کامل

Wave Operator Bounds for 1-dimensional Schrödinger Operators with Singular Potentials and Applications

Boundedness of wave operators for Schrödinger operators in one space dimension for a class of singular potentials, admitting finitely many Dirac delta distributions, is proved. Applications are presented to, for example, dispersive estimates and commutator bounds.

متن کامل

Zero Energy Scattering for One-dimensional Schrödinger Operators and Applications to Dispersive Estimates

We show that for a one-dimensional Schrödinger operator with a potential, whose (j + 1)-th moment is integrable, the j-th derivative of the scattering matrix is in the Wiener algebra of functions with integrable Fourier transforms. We use this result to improve the known dispersive estimates with integrable time decay for the one-dimensional Schrödinger equation in the resonant case.

متن کامل

The L- Continuity of the Wave Operator for the Three Dimensional Schrödinger Operator

We consider a three dimensional perturbed Schrödinger operator H = −∆ + V (x), and the associated wave operators, that are defined as the strong L-limits limt→±∞ ee0 . We prove the boundedness of W± as operators onto L, for all p ∈ [1,∞], provided the potential V is small in the Rollnik and Kato norms. We use this result to obtain sharp dispersive estimates for Schrödinger, wave and Klein-Gordo...

متن کامل

Dispersive Estimates for Matrix Schrödinger Operators in Dimension Two

We consider the non-selfadjoint operator H = [ −∆ + μ− V1 −V2 V2 ∆− μ+ V1 ] where μ > 0 and V1, V2 are real-valued decaying potentials. Such operators arise when linearizing a focusing NLS equation around a standing wave. Under natural spectral assumptions we obtain L(R)× L(R)→ L∞(R2)× L∞(R2) dispersive decay estimates for the evolution ePac. We also obtain the following weighted estimate ‖wePa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005